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The soliton interaction is investigated based on solving the higher-order nonlinear Schrédinger equation with
the effects of third-order dispersion, self-steepening, and stimulated Raman scattering. By using Hirota’s
bilinear method, the analytic one-, two-, and three-soliton solutions of this model are obtained. According to
those solutions, the relevant properties and features of physical and optical interest are illustrated. The results
of this paper will be valuable to the study of signal amplification and pulse compression.
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I. INTRODUCTION

It has been predicted theoretically in Ref. [1] that an op-
tical pulse in the dielectric fiber can form a solitary wave due
to the balance between the nonlinear effect and the group-
velocity dispersion (GVD) in the anomalous dispersion re-
gime, and the optical soliton has been reported experimen-
tally in Ref. [2]. Since then, the study of the optical soliton
has always been attractive and active, and great progress has
been made in both theoretical and experimental research
[3-7]. In recent years, to enhance the capacity of high bit rate
and long-distance optical communication systems [8], the
emphasis is placed on the study of the propagation of ul-
trashort optical pulses with a subpicosecond (femtosecond)
width. In addition, it is of considerable practical importance
to investigate higher-order nonlinear effects such as the
third-order dispersion (TOD), self-steepening (SS), and
stimulated Raman scattering (SRS).

It is well known that the time interval between two neigh-
boring bits or pulses determines the capacity of the optical
communication systems, and the stability of two neighboring
pulses affects the propagation distance [9]. Namely, the
smaller the spacing between the two neighboring pulses, the
greater the capacity of the system will be, and the better the
stability of pulses, the farther the transmission distance will
be. Thereby, if a certain interval between two solitons exists
in the system, they will interact mutually. This phenomenon
is the interaction between two solitons.

Generally speaking, in the optical soliton communication
system, the transmission of information is usually in the
form of a large number of soliton pulse series. In this case,
these solitons will inevitably interact which directly affects
the quality and capacity of the system. Therefore, in the sys-
tem design, the interaction of solitons is one of the most
important issues that need to be considered. According to
Ref. [10], when two adjacent solitons have a small interval,
there will be interaction between them. Soliton interaction

*Corresponding author. gaoyt@public.bta.net.cn

1539-3755/2008/77(6)/066605(7)

066605-1

PACS number(s): 05.45.Yv, 42.65.Tg, 42.81.Dp, 42.65.Re

will lead to pulse distortion, transmission characteristic dete-
rioration, transmission rate decrease, and transmission dis-
tance shortening. Thereby, the performance of soliton trans-
mission system will be degraded. In order to avoid such kind
of soliton mutual interaction, in principle, we can increase
the distance between them, but this will restrict the capacity
of the system. Actually, the interaction of solitons has been
studied widely [11,12] and a series of methods to inhibit such
interaction have been reported [13—15]. However, we notice
that there has not been much discussion on the interaction of
the femtosecond solitons based on the special analytic soli-
ton solutions obtained via Hirota’s bilinear method. There-
fore, in this paper, we are devoted to investigating the inter-
action of the femtosecond solitons analytically which is
described by the high-order nonlinear Schrodinger (HNLS)
equation [16,17]
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where A is a complex function of z and 7, and the subscripts
z and T denote the partial derivatives with respect to the
distance and time. (35 is the TOD coefficient, w is the carrier
frequency, « is the attenuation constant, and 7% is the Raman
resonant time constant.

Nowadays, with the in-depth study of the interaction of
solitons, it has been found that the solitons in the process of
interaction can be used in the energy conversion and the
pulse compression [18-20]. An attractive feature of the in-
teraction is that solitons during interaction can transform en-
ergy, and this has brought increasing interest in studying the
process of the interaction which can amplify the solitons
without using other techniques. The major virtue of this type
of collision-based amplification process is that it does not
induce any noise, for it does not require any external ampli-
fication medium [19]. However, this research is generally
either based on the standard nonlinear Schrodinger (NLS)
equation or the standard coupled nonlinear Schrddinger
(CNLS) equations.
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Being motivated by the above intriguing aspects, in the
present work, we carry out a detailed study on the soliton
collision dynamics in the HNLS equation. The Hirota’s
method based on the computerized symbolic computation
[21-23] has made it exercisable to solve the HNLS equation
under investigation. In particular, via the obtained soliton
solutions, we point out that the adjacent solitons can be con-
trolled appropriately in the process of the interaction, pro-
vided that the soliton parameters satisfy certain conditions.
An important character of the collision process of the soli-
tons is that in the two solitons case, after collision, one of the
solitons can gain energy from the other.

The structure of the present paper is as follows. In Sec. II,
with the aid of symbolic computation, the bilinear form for
the HNLS equation is acquired by use of Hirota’s bilinear
method. In Sec. III, (a) the one-soliton solution, (b) the two-
soliton solution, and (c) the three-soliton solution are explic-
itly presented based on its bilinear form, and the detailed
analysis of the solitons via the obtained soliton solutions are
illustrated. Finally, our conclusions are given in Sec. IV.

II. BILINEAR FORM FOR THE HNLS EQUATION

In the anomalous dispersion regime (83, <<0), considering
B3<0 and aL<<1, where L is the fiber length and « is neg-
ligible [9], Eq. (1) takes the form in normalized coordinates
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where u is the normalized amplitude and
2 3
A=VPou, Lp=——, Lp=7—, Ly=—, (3
1B P Py
Z LD TR T 1 — Z/U
E=—, Ly s TR= s T=__4,
Lp Ly T, Ty Ty
) LD 'yP()T(z) 1
N = = N S = N
Ly 1B w7y

in which P is the peak power of the incident pulse, 7and &,
respectively, represent the normalized time and the normal-
ized propagation distance, Ly, is the dispersion length, Ly
the nonlinear length, v, the group velocity, w, the carrier
frequency, N the soliton order, and Lb a dispersion length
associated with the TOD. The parameters s and 7z account
for, respectively, the effects of SS and SRS.

By introducing the dependent variable transformation [24]

L, 8En ’ @)
(&)
where g(&,7) is a complex differentiable function and f(¢, 7)
is a real one, after some symbolic manipulations, the bilinear
form of Eq. (2) is expressed as

i 1
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PHYSICAL REVIEW E 77, 066605 (2008)

2’ (6)

with the coefficient constraint Ly=s=7. Here, Hirota’s bi-
linear operators D, and D, [25,26] are defined by
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Equations (5) and (6) can be solved by introducing the fol-
lowing power series expansions for g and f:

DXf-f=2N"g

g=e€g +E€g3+ g5+ e, (8)

f=1+€f+ éfy+ fg+ -, 9)

where € is a formal expansion parameter. Substituting Eqs.
(8) and (9) into Eqgs. (5) and (6) and equating coefficients of
the same powers of € to zero can yield the recursion relations
for f,(¢,7) and g,(&,7) (n=1,2,...).

III. SOLITON SOLUTIONS FOR THE HNLS EQUATION

In the above section, we have obtained the bilinear form
for the HNLS equation. In order to analytically study the
process of the interaction of solitons, next we will give the
one-, two-, and three-soliton solutions from the bilinear Eqs.
(5) and (6) and present the related graphics of them to ex-
plain the physical relevance of soliton solutions. We assume
that the input pulse is a fundamental soliton pulse of the form

A(0,7) =N sech(7), (10)

which has a wavelength of 1.55 wum and an initial Trwym
(TFWHM= 1763T0) of 150 fs.

A. One-soliton solution

To obtain the one-soliton solution for Eq. (2), we assume
that

gl=e(}7 (11)

where 0=y(&)+ n7+¢, with 7 as an arbitrary complex pa-
rameter, ¢, as a real constant, and ¢(¢) as a differentiable
function to be determined. Substituting g(&, 7) into the result-
ing set of linear partial differential equations, and after some
calculations, () is determined to be

(I 2 Lu
9//(5)—(2772 . 7;3)5
and

"
N2€0+0

g(&ED=0 (n=3,5,...), (12)

fn(é’T)=0 (n=4,6,...).

Without loss of generality, we set e=1. Thus, the one-soliton
solution can be explicitly expressed as
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FIG. 1. (Color online) Intensity profiles of the soliton solution
expressed via solution (13). The parameters adopted here are ¢,
=1, N=1, Ly=0.01 with (a) =1, (b) p=1+i.
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where the asterisk denotes the complex conjugate.

According to Eq. (13), we will get the graphics shown in
Fig. 1. Figure 1 illustrates the pulse propagation of the fun-
damental soliton along the distance & with suitable choice of
the parameters in Eq. (13). The phase of the soliton will be
changed if we choose the different values of #. In this case,
n»=1 in Fig. 1(a) and %=1+ in Fig. 1(b), respectively. How-
ever, they both transmit stably without distortion of the soli-
ton shape. At that time, the effect of self-phase modulation
(SPM) can cancel the effect of anomalous GVD perfectly.
These results indicate that only # influences the phase of the
fundamental soliton but the soliton properties will not be
affected if we just change the value of 7.

B. Two-soliton solution

The fundamental soliton cannot interact with other soli-
tons in a single communication system in the ideal condi-
tions as discussed in section A. Whereas, there are always
multiple signals in the high bit rate and long-distance optical
communication system. Therefore, it is necessary to study
the multisoliton transmission in the system. In this section,
we mainly pay our attention to the interaction between two
solitons. At first, to derive the two-soliton solution, we take

f=1+ 1+ fs, (14)

where g =¢”1+e%, 6,=;(§)+nm+¢;(j=1,2) with 7; as ar-
bitrary complex parameters, ¢; as real constants and

8§=81183

i Ly
wj(g):<5n?—gn?>§. (15)
Then, by solving the resulting linear partial differential equa-
tions recursively, we can write the explicit form of the two-
soliton solution as

FIG. 2. (Color online) Intensity profiles of the two-soliton solu-
tion expressed via solution (16). The parameters adopted here
are =2, p=1, ¢;=1.5, N=2, Ly=0.01 with (a) ¢,=-2.5, (b)
¢,=0.5.
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With the suitable choice of the parameters in Eq. (16), we
get Fig. 2. We choose the same value of 7, and 7, but
different ¢, in Figs. 2(a) and 2(b). In this case, the phases of
the two solitons are the same and two sets of parallel solitons
are obtained. In Fig. 2(a), the two-soliton pulses do not in-
teract with each other and propagate stably along the optical
fiber with a constant separation between them even if the
propagation distance grows long enough. However, if we
reduce the interval between the two solitons which is prima-
rily reflected in the revised value of ¢,, as shown in Fig.
2(b), interaction occurs. The pulses follow a periodic evolu-
tion pattern in the anomalous dispersion regime as they
propagate along the fiber. Namely, by selecting suitable ini-

21
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(a)

(b)

FIG. 3. (Color online) (a) Intensity profiles of the two-soliton
solution expressed via solution (16) with 7,=3, p=1, ¢;=1.5,
¢,=0.5, N=2, Ly=0.01. (b) Comparison between the input pulse
and the second-order soliton at £=2.

tial separation between two solitons, they can propagate
separately without interaction. For the case of Fig. 2(b), by
choosing the proper values of 7, and 7,, e.g., »;=3 and
m=1, the compressed soliton pulse will be acquired, as
shown in Fig. 3.

Figure 3 demonstrates that the two solitons evolve into
the second-order soliton and soliton-effect pulse compression
phenomenon occurs in this case. From Fig. 3(a), we can see
that the two-order soliton contracts to a fraction of its initial
width at first, and then merges again to recover the original
shape. These changes mainly result from the mutual interac-
tion between the SPM and GVD. In order to show the com-
pressed soliton pulse better, we generate its transverse graph-
ics Fig. 3(b). The solid curve in Fig. 3(b) represents the
initial shape of the input pulse which is symmetric at £=0
and the dashed curve represents the pulse at £=2.

In the cases discussed above, n; and 7, are both real
constants and the input pulses are parallel to each other,
while in following Fig. 4, the values of 7, and 7, will be
considered as complex. The two input pulses do not keep the
same phase and have an angle. The size of the angle between
two pulses is determined by 7, and 7,. Now, it is of great
value to investigate the collision process of these two soli-
tons. In Fig. 4(a) with »,=1+i and 7,=1.1-i, a head-on
collision of the two solitons is illustrated. At the moment of
collision they exchange their energy along with a phase shift.
The left-hand soliton gets enhanced in its amplitude while
the other one is suppressed. The two solitons collide unperi-
odically after being input into the optical fiber for distances,
and are well separated before and after collision. And this is
particularly evident after collision: the two solitons separate
with larger and larger interval along the propagation direc-
tion. In addition, the pulse width of both of the two solitons
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FIG. 4. (Color online) Intensity profiles of the two-soliton solu-
tion expressed via solution (16). The parameters adopted here are:
¢©1=3, ¢,=—1, N=2, Ly=0.01 with (a) 5 =1+i, p=1.1—-i, (b)
m=1+0.5i, 7,=0.5-1i.

decreases while their amplitude increases at the beginning of
collision, then they exchange their energy and the pulse ex-
pands with decreasing energy after propagating in the fiber
for distances. Compared with Fig. 4(a), Fig. 4(b) illustrates
another energy exchange phenomenon, in which the ampli-
tude of one interacting soliton nearly becomes zero after the
collision.

From Eq. (2), the energy conservation law can be ob-
tained as

j 1
(uP)e+ [é(u’;u — ) + Lyl =30
3 2 2 4
+ ESN — gN* |[u*| =0. (18)

In Fig. 4, both of the two solitons comply with the energy
conservation law before and after collision, which means that
the collision scenario shown in Fig. 4 may be viewed as an
amplification process in which one of the solitons represents
a signal (or data carrier) while the other soliton represents an
energy reservoir (pump). The main virtue of this amplifica-
tion process is that it does not require any external amplifi-
cation medium, and therefore the amplification of the soliton
does not induce any noise.

C. Three-soliton solution

According to the above procedure of obtaining the one-
and two-soliton solutions, we can proceed to construct the
three-soliton solution for Eq. (2) as below:

_ 81+83+8s (19)

g
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FIG. 5. (Color online) Intensity profiles of the three-soliton so-
lution expressed via solution (19). The parameters adopted here are
7]122, 7]223, 7]324, (5] =—3, ©r= 1, (P3=8, N=3, LH=00]

_ N6(771 - 772)2(771 - 773)2(772 - 773)2

(1 + )% (1 + 15)° gy + 95)*(ma + )2y + 73)°
(71 = 1) (77, = 53)*(5 — m3)?

(m+ 7]2)2(773 + WT)Z(W3 + 77;)2(7]3 + 77;)2’

03

1)

with 6,=¢,(8)+ 7,7+ ¢;(j=1,2,3), 7; as arbitrary complex
parameters, ¢; as real constants and

i Ly
Pi(é) = (Eﬂf— ?71?>§-
When N=3, according to Eq. (19), by suitable choices of the
parameters of ¢;, ¢,, and ¢3, we have the intensity profiles
of the three-soliton solution expressed via Eq. (19), as shown
in Fig. 5.

Similar to the two soliton pulses, the parallel three soliton
pulses transmit stably without interaction with each other
and propagate along the optical fiber with a constant separa-
tion among them. However, when we revise the values of ¢,
¢, and ¢j3, the interactions of the solitons corresponding to
the revision is shown in Fig. 6.

The interaction scenario shown in Fig. 6(a) can be ex-
plained by the relative distance among three solitons. The

(b)

FIG. 6. (Color online) Intensity profiles of the three-soliton so-
lution expressed via solution (19). The parameters adopted here are
m=2, m=3, py3=4, N=3, Ly=0.01 with (a) ¢;=0.5, ¢;=1, ¢3
=8, (b) ¢;=0.6, ¢,=2.8, ¢3=3.15.

PHYSICAL REVIEW E 77, 066605 (2008)

(@)

(b)

FIG. 7. (Color online) (a) Intensity profiles of the three-soliton
solution expressed via solution (19) with =1, 7,=3, 73=5, ¢,
=0.6, ¢,=2.8, ¢3=3.15, N=3, Ly=0.01; (b) comparison between
the input pulse and the third-order soliton at §=2.

relative distance between the right hand soliton and the
middle one is smaller than that between the left hand one and
the middle one, thus, the right hand soliton and the middle
one interact strongly while the left hand soliton can propa-
gate undistorted. The reason why the physical phenomenon
occurring in Fig. 6(b) can also be illustrated by the above
explanation on relative distance among them. Compared
with Fig. 6(b), if keeping the values of ¢;, ¢,, and ¢; and
changing the values of #;, 7,, and 7; properly, we can draw
the graphics shown in Fig. 7.

As shown in Fig. 7, these three solitons evolve into a
third-order soliton. Soliton-effect pulse compression phe-
nomenon also occurs in this case. Figure 7(a) displays the
periodic evolution of the third-order soliton. As the pulse
propagates along the fiber, it splits into two distinct pulses,
contracts to a fraction of its initial width, and then merges
again to recover the original shape. Compared with the
second-order soliton in Fig. 3(b), the level of compression is
obviously enhanced which can be seen from Fig. 7(b). The
reason for the varying shape and the enhanced level of com-
pression can be traced to the soliton order N. It is clear that
higher order of the soliton will enhance the amplitude of the
soliton and vice versa. However, the increase of the soliton
order N will result in the reduction of the quality of the
pulses originally compressed. Fortunately, there exists a
simple and feasible technique which can significantly im-
prove the pulse quality achieved by the soliton-effect pulse
compression technique.

IV. CONCLUSIONS

In this paper, we have obtained the analytic soliton solu-
tions for the HNLS equation, i.e., Eq. (2), by directly apply-
ing Hirota’s bilinear method. We have analyzed the propaga-
tion of the one, two, and three solitons in detail. According to
expression (13), the fundamental soliton pulse could transmit
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stably without distortion of the soliton shape in a certain
range with suitable choices of the parameters. Depending
upon different choices of the soliton parameters, the multi-
soliton solutions have different applications. If 7 is a real
constant, the two and three solitons can be used for pulse
compression in ultra-high-rate and long-distance optical
communication systems. Moreover, with the increase of the
order of the soliton, the compression will become intense.
While # is chosen as complex, we can infer from the colli-
sion process that the relative phase difference of those soli-
tons changes in contrast with the one of the input solitons.
The centers of solitons move away from the original posi-
tions, at the same time, the solitons undergo fascinating en-
ergy exchange in the two soliton system. By virtue of this
energy exchange property, it is feasible to promote the colli-
sion process to the rank of a highly efficient amplification
process without noise generation. The results of this paper

PHYSICAL REVIEW E 77, 066605 (2008)

will be of certain value to the study on signal amplification
and pulse compression.
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